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Anomalous electron energy loss in small spheres 
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Abstract. In analogy to the case of optical absorption it is shown that inclusion of non-local 
surface effects results in a very large contribution to the energy loss of fast electrons scattered 
by a sphere. The scattering is found to be predominantly in the forward direction and is an 
order of magnitude larger than that calculated classically. 

1. Introduction 

Within the last two years experiments by Schmidt-Ott and Siegman (1980) and theory 
by Penn and Rendell (1981,1982) and by Apell and Ljungbert (1982a, 1983) have been 
concerned with the anomalously large optical absorption and photoyields exhibited by 
small metal spheres. The theories demonstrate that the anomolous absorption is directly 
related to the surface photoeffect which produces enhanced excitation of electron-hole 
pairs in the spheres. It is of interest to investigate the possibility that a similar enhance- 
ment can occur in the energy loss of fast electrons through small spheres. Because the 
dominant electron scattering is found to be in the forward direction there is a strong 
analogy with photon absorption where only small momentum transfers to the sphere 
can occur. We therefore begin by reviewing the role of the surface in photoabsorption 
and then show how the relevant theory can be applied to the case of electron energy loss 
by generalising the method developed by Apell and Ljungbert (1982a) to treat 
photoabsorption. 

The understanding of the interaction between light and a metal surface has increased 
considerably during recent years (Kliewer 1980, Feibelman 1982, Mukhopadhyay and 
Lundqvist 1978). The presence of a surface has a profound influence on the behaviour 
of the total electromagnetic field induced in the solid. First of all it breaks the translational 
invariance of the solid and therefore provides a region where the induced field can have 
a large spatial variation compared with the wavelength of the incident radiation. Second- 
ly the surface is the region in between which the dielectric properties go from their 
vacuum to their bulk values. The treatment of these spatial aspects constitutes what is 
known as non-local optics as compared with the standard local treatment of a sharp 
vacuum-metal interface in classical optics. The first aspect of non-locality has been 
treated extensively within the semiclassical infinite-barrier model (Kliewer 1980, 
Mukhopadhyay and Lundqvist 1978, Apell 1978, 1981a) which has a sharp vacuum- 
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metal interface as in the case of the classical treatment but the metal is described with a 
dielectric function containing information about single-particle excitations, thus being 
superior to for instance the Drude dielectric function used in the classical treatment 
which only incorporates the dispersionless bulk plasmon. The main effect of including 
electron-hole pair excitations in the semiclassical infinite-barrier model is to allow the 
classical singular surface charge to relax spatially into the metal. The qualitative aspects 
of this model are rather well understood. However, the model fails in its quantitative 
predictions (Kliewer 1980, Feibelman 1982. Apell 1982) basically because it does not 
contain the second aspect of non-locality: the extension of the interface into the vacuum 
region due to the spill-out of the metal electrons. In our view this is essential to a 
quantitative treatment of non-local optics. 

The effects on the electromagnetic field of this continuous transition in the dielectric 
properties have been illustrated, primarily numerically, by Feibelman (1975). Even 
though it is a formidable task to gain additional insight into this aspect without having 
to resort to heavy numerical calculations it is actually possible, in a restricted sense, to 
accomplish this for a realistic metal surface using a procedure developed by Apell 
(1981b) based on ideas presented by Flores and Garcia-Moliner (1972)-where the two 
Maxwell equations which require continuity of the field components parallel to the 
surface ( E ,  and HI)  are integrated over the surface region in a pillbox manner. We ask 
what the changes in the Fresnel reflection coefficients are when there is no longer a sharp 
interface between vacuum and metal. For incident light with the field vector parallel to 
the surface (s-polarised) there is found to be no significant change since the field is 
already continuous at a sharp interface. However, for p-polarised light which has a 
discontinuous field component perpendicular to the surface in the classical treatment 
we find a non-negligible correction to the Fresnel laws. Since the non-local treatment 
allows for the surface charge to relax spatially the correction to the Fresnel equations 
enters naturally as the first moment of the induced charge density, denoted by d -  
(Feibelman 1976). This is the length of non-local optics and is typically of the order of 
Angstroms. With reasonable estimates for d- a good account has been achieved for 
various physical situations pertinent to surface physics such as the photoyield from 
aluminium (surface photoelectric effect) (Apell 1982), damping of vibrationally excited 
CO on copper (Apell 1983) as well as the dispersion and damping of the surface plasmon 
on A1 (Ahlqvist and Apell 1982). The quantitative comparison of d -  with the experi- 
mental findings reveals several aspects of importance for a proper treatment of the 
non-local response of a metal (surface). It is necessary to use a profile rather than a sharp 
interface, at least for energies below the bulk plasmon frequency, even if electron-hole 
pair excitations are included in the latter (Kliewer 1980, Apell 1982). Not surprisingly 
a self-consistent potential is superior to other types such as the sharp interface treated by 
Kliewer (1980); the difference can amount to an order of magnitude in the predicted 
absorption. This is related to the fact that the sharp interface imposes a severe restriction 
on the induced density in that it cannot relax outside of the sharp barrier. 

The non-local treatment as presented by Apell (1981b) has later been applied to 
photon absorption in a metal sphere (Apell and Ljungbert 1982a). A general framework 
was developed there in which earlier non-local theories were shown to be in essence 
different ways of calculating the centre of gravity of the induced charge (denoted d,  for 
a sphere). The reason for studying a sphere for non-local effects was that in this case 
light can couple to the surface plasmon resonance which is not possible at a planar 
surface because of a mismatch in momentum. This coupling enables one to obtain a 
larger field strength in the medium and thus the electron-hole pair production is expected 
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to increase (Penn and Rendell 1981, 1982). The non-local theory developed for the 
sphere has further been successfully applied to explain the observed red shift of the 
surface plasmon resonance compared with the Mie prediction, Ape11 and Ljungbert 
(1982b) whereas earlier theories based on sharp surfaces by necessity gave a blue shift. 

In view of those findings we felt the need to extend the treatment, so far limited to 
incident photons, to describe the interaction between probing electrons and spherical 
particles. It may be that electron scattering from spherical particles can provide a 
surface-sensitive tool because previous studies have been based on theories which did 
not contain electron-hole pair excitations (Fujimoto and Komaki 1968). 

The present theory involves screening the fast electron by the bulk dielectric function 
and including the effects of the sphere surface as a correction factor to the classical 
formulation. This is crucial because of the difficulties in calculating a momentum- and 
frequency-dependent dielectric function for a sphere when the surface is taken into 
account. It should be noted that the semiclassical infinite-barrier model also makes use 
of the bulk dielectric function but as mentioned above the model gives an absorption 
coefficient that is at least an order of magnitude too small for frequencies below the bulk 
plasmon frequency. 

The only previous calculations of the energy loss of fast electrons incident on a sphere 
were carried out by Fujimoto and Komaki (1968) in the hydrodynamic approximation 
and by Lushnikov and Simonov (1975) who obtained similar results. We will show that 
the inclusion of non-local surface effects increases the rate of energy loss by over an 
order of magnitude. In Q 2 we present the theory for the energy loss, and numerical 
results are presented and compared with those of Fujimoto and Komaki (1968). 

2. Theory of the electron energy loss 

In this section we generalise the work of Fujimoto and Komaki (1968) to include the 
excitations of electron-hole pairs near the surface of the sphere. A fast electron moving 
with velocity U in the .z direction moves in a path given by rO = ( p o ,  u t )  where the 
centre of sphere is at the origin. Consequently lpo( is the distance of closest approach 
between the electron and sphere. The charge density of the electron is 

and its Fourier transform is 

The charge creates a potential 

where outside the sphere p(eX)(q,  o) = p ~ ( q ,  o) and inside the sphere the charge is 
screened so that p('")(q, w )  = po(q, w)/E(q, o) where E ( q ,  w )  is the bulk momentum- 
dependent dielectric function. Thus surface effects are not included in p('"). The potential 
due to the charge is given by using (1) and ( 2 ) ;  
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where 

Equation (3a) can also be written as 

q(j)(r ,  w )  = C q,I?<r, w )  ylm(fir) 
lm 

where 

In addition to the 'direct' potential created by the fast electron the potential due to 
the surface response of the sphere must be considered. Near the sphere surface we do 
not know the potential; it can only be obtained if we know the dielectric response of the 
sphere including the surface response. We assume that there is a region outside of which 
the effects of the surface are damped out and the potential takes on an asymptotic form. 
In the case of a plane surface Feibelman (1975, 1982) has found that the asymptotic 
region begins roughly 10 8, from the surface and we assume that the case of a sphere is 
not significantly different. In this region the potential must have the form 

where rl < R < r2 and R is the sphere radius. 
These potentials satisfy V2 q' = - 4npp) and V2 q< = - 4np,('") and the terms involv- 

ing the pS and rj exhibit the correct behaviour at r = 0 and r = ~4 respectively. While the 
above potentials are physically correct only for r > r2 or rl > r they can of course be 
continued into the regions r2 > r > R and R > r > rl and it will be convenient to do so. 
Define q ( r ,  U )  to be the potential given by (5b) but with the condition r > r2 replaced 
by r > R and define @<(r ,  w )  to be the potential given by (5a) but with the condition 
r < rl replaced by r < R. Denote the true potential in the region rl < r < R by q < ( r ,  w )  
and the true potential for 12 > r > R by q'(r, w )  where q' are explicitly given by 
equation (5) for r > r2 and r < rl . Thus q and @differ only in the region rl < r < r2 and 
@ has the form of the potential one uses in the classical treatment. If 

~ ( r )  = I= q l m ( r ) Y l m ( f i r )  
lm 

then 

It is useful to define a quantity 

AE$lm)(r) = ( E : l m ) ( ~ )  - E:'"(Y))/(E$"'(R ') -E;'"')(R-)) 
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where R f  = R & 6 as 6+ 0 and where E!Im)(r) is the true field derived from q' and 
E(")(r) is the field defined from @defined above. We define d, which is fundamental to 
the present approach 

,!Im) = 1; dr AE!") ( r ) .  

It follows immediately (see Appendix 1) that 

In order to determine the coefficients p and y we use V . D = 0, i.e., the radial 
component of D must be continuous. We will assume that D can be approximated 
adequately by D = EE where E = -VQ. This is a reasonable assumption because D is a 
continuous function in the classical treatment and the use of @ is equivalent to the 
classical approximation. From equation (5) we have D = - V ~ D  where 

where 

E = E ( 0 ,  w) .  

Note that this expression for Q ~ D  yields V * D = -4np0 as required. Continuity of D, now 
gives 

/3Im&l + yIm(l + 1) = 0. (12) 

P/m = - ( 1 +  I )r /m/A/m (13a) 

Yim = Elr/m/AIm (13b) 

Equations (10) and (12) yield 

where 

A , = ~ f + ( l +  1 ) [ 1 + l R - ' d ~ " ' ( ~ -  l)] 

(q iZ) (R)  - qi;)(R)). (134  

The effects of the sphere surface are in d!"). If d!Im) = 0 one obtains the classical 
solution. It is shown in Appendix 2 that ,!Im) is directly related to the surface charge 
density induced by the fast electron 



5734 D R Penn and P Ape11 

Here 6pis the difference between the charge induced by the fast electron and the charge 
induced if the sphere were described by the bulk dielectric function. The evaluation of 
d!")( w) will be discussed later in the paper. Because 6p represents a charge induced in 
the sphere it will have the symmetry of the sphere and can be expressed as 

6 p ( r )  = E pi(r) y i m ( f i r )  
im 

so that dr is a function of 1 but not m. This point is discussed in Appendix 2 .  Consequently 
Aim of equation (13c) is also a function of 1 but not of m. 

The work done by the fast electron with trajectory r = ( P O .  u t )  is shown by Fujimoto 
and Komaki (1968) to be 

where AEz (ro, t )  is the z component of electric field induced by the particle, i.e., AE is 
the difference between the field in the presence of the sphere and the field in the absence 
of the sphere. Using AEz = - d A q / a z  and writing A q ( r .  t )  in terms of its Fourier 
transform yields I d2q e 

dw wexp(iq . p o ) A q ( Q .  w :  P O )  W ( p 0 )  = i -  - 
2nu (242  --r 

where Q is given by (3c). We require 

where P(q11, w) is the probability the fast electron loses energy w and momentum q in 
the scattering from the sphere. Use of (16) in (17) yields 

where A q  is the potential created by the fast electron minus the potential it creates in 
vacuum. 

From equation (5) we have 

where 
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The quantities Plm and ylm are given by equations (13a) and (13b) respectively and we 
note that equation ( 1 3 4  can be written as 

rlm = (I  - d p $ ) ~ q p ( ~ ) .  (20) 

It is shown in Appendix 3 that use of equations (19) and (18) yields 

4 e' 1 R3 1 
xhu21[3Q2 [E(Q.w)  I 

P(q1, w )  = -- --Im - - 3 E (21 + 1) ( j ;  (QR))  

R - -2 1 ( 1 +  1)(21+ 1) 
Q4 1 

In the classical case = 0 in equation (21) while in the work of Fujimoto and 
Komaki (1968) P = 0 where P is a measure of the plasmon dispersion. It is readily 
verified that their results agree with equation (21) in this limit. 

Following Apell and Ljungbert (1982b) we assume R is large so that d? may be 
replaced by d, , the response of a flat surface discussed by Feibelman (1976) and Apell 
(1981b). This approximation follows from the fact thatd!') is afunction of //(RkF) where 
kF is of the order of the inverse Fermi screening length and only small Is are important 
inequation (21) because the factors Q-2and Q-4favourforward-scattering,i.e., QR 4 1. 
Because we used!') - d, we limit ourselves to spheres such that R 3 20 A. The first sum 
over I in equation (21) can now be carried out using 

E (21 + 1) ( j i (QR))? = 5 (22) 
/ 

to obtain 

where 

which is a direct generalisation of the effective dielectric function found by Apell and 
Ljungbert (1982a) where E (  Q,  w )  in (23b) is replaced by ~ ( 0 ,  U). This is justified by the 
fact that small-Q scattering dominates in (23a). This implies small 4 1  and u/u =e 1. The 
first term, Im( l / E ) ,  is the usual energy-loss function and the second term on the right- 
hand side of (23a) which includes energy loss to surface excitations as described by Al.  
The zeros of A' give the surface plasmon dispersion in agreement with Apell and 
Ljungbert (1982a). In addition io entering the expression for the surface plasmon 
dispersion and damping ds') determines the effective radius of the sphere since 
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The quantity d:') measures the position of the induced charge relative to the surface 
of the sphere as shown in equation (14). In the classical treatment the induced charge 
is at the surface of the sphere (and d!') = 0). In fact the induced charge is shifted to 
( R  - dill) and consequently the effective size of the sphere is changed. 

It is clear from equation (21) that the dominant scattering occurs for small 4 1 ,  i .e. ,  
for small Q R  =[q: + ( o / u ) * ] ~ , ' ~ R  . This is because of the leading factors of and 
Q-4 in the bulk and surface terms. Following Fukimoto and Komaki (1968) we replace 
E (  Q ,  U) by ~ ( 0 ,  U) in equation (23) and use the Drude form of the dielectric function 

N = 4e2R5/(3nhu2)  

P =  Q R  
CiJ = w/wp 

g = l /w,t  

f@ = [l/(21+ 1)][1 + ( 1 +  1)d)l .  

d = d _ / R  

In equation (23) the separation into bulk and surface terms is on the basis of the 
denominators U( fi - ig) - 1 and fi( fi - ig) - c$ the zeros of which describe bulk and 
surface plasmons respectively. 

The scattering is largest for small p and it is useful to expand equation (25) in powers 
of p-2. One finds that PB is of the order of po while 

Im a( w )  
4e2 R3 

PS(41, U) = - 

where 
E ( G ,  U) - 1 

= q o ,  w )  + 2 

and E(0, 0) is given by equation (23b). We note that the probability of energy loss is the 
product of the Coulomb interaction, 4ze2/Q2, the volume of the sphere and the optical 
polarisability of the sphere in the limit of small Q .  The imaginary part of anow contains 
a term proportional to d = d,/R due to electron-hole excitation which results in a term 
in PS proportional to R2 which is the expected result for surface scattering. 
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In order to compare the non-local scattering probability with the classical one given 
by d = 0 we assume g e I Im 2 1 and 1 Re 1 4 1 in equation (25). Taking the small-Q limit 
yields 

while ford = 0 question (25) gives the classical result 

It will be seen that Im d CX Q so that the non-local expression (27a) and the classical one 
(27b) are very similar but with different effective electron lifetimes. The vanishing of PS 
at Q = 1 as indicated by equation (27a) is a characteristic of the non-local treatment. 

In order to evaluate P(qii, w )  from equation (25) we require knowledge of d = 
d-/R where d, ( U )  is a response function with real and imaginary parts. It has been 
shown by Apell (1981b) that 

where E - ~  is the true inverse dielectric function for a solid with a plane surface located 
in the region z > 0 and z1 < 0 < z2 and z l ,  z2 are such that z < z1 and z2 < z describes 
the region in which the fields have reached their asymptotic values. Assuming (Apell 
1981b) that 

E-+,  z‘,  w )  = l/E(Z, w)6(z  - z ’ )  

E ( Z ,  U) = 1 - (w&’w2)no(z) 
where 

and where no(z) is the electron ground-state density of the solid relative to the bulk 
value at z = w .  This approximation for E - ~ ( z ,  z ’ ,  w )  has the virtue of being simple and 
of fulfilling thef-sum rule. It corresponds to placing all the oscillator strength in a local 
plasmon of frequency d = o.$no(z) . While this gives a rather poor approximation to 
the spatial variation of the induced density it accounts reasonably well for the frequency 
dependence of d, in equation (29c). It has been used with some success in predicting the 
overall trend in the photoabsorption spectra of atoms (Lundqvist and Mukhopadhyay 
1980). Equation (29) yields an approximate form of d, having the essential features of 
the non-local response 

Assuming the density profile is given by (Apell 1983) 

(30) no(z)  = tanh’ /3z o < z < x  

one finds from use of (30) in (29) and z1 = 0, z2 = 

R e d , ( o )  = Red,(O) 

n 
(31b) Imd,(w) = --Red,(O)aO(l - S). 

2 



5738 D R Penn and P Ape11 

The Re d, (0) can be chosen to agree with the calculations of Lang and Kohn (1973) 
who obtained Re d- (0) = -0.85, -0.69, -0.63 8, for rs = 2 ,4 ,6 .  

In figure 1 we have plotted the quantity Ps/N given by equation (25c) as a function 
of fi = o/wp for various values of p = [q2 +( w/u)~]”~H for the non-local theory 
(present work) and for the classical theory as obtained from equation (25c) by setting 
d- = 0. We have chosen g = l/opt = and for the non-local case Re(d, (O)/R)  = 
-0.03. For p = 0.1 only the I = 1 term in equation (2.5~) is important and the curves are 
adequately represented by equations (27a) and (276). For p = 1 the main contribution 
is again from 1 = 1 while for p = 4 the terms 1 = 2 and 1 = 3 are the most important and 
as a result the surface plasmon peak given by fi2 = d is shifted to higher energy. Note 
that the p = 4 result is roughly four orders of magnitude less than p = 0.1; the Coulomb 
scattering is forward. 

10-51  1 I , 1 
0.1 0.3 0.5 0.7 0.9 

W / W ,  

Figure 1. Surface scattering probability PS as a function of energy loss hwfor different values 
of p = QR. Ps is normalised to N which is defined in equation ( 2 5 e ) .  Small p implies 
forward-scattering. The full curves are the results of the present calculations and the broken 
curves refer to the classical results. 

In summary we find the case of energy loss by fast electrons quite similar to that of 
photon absorption, particularly for small scattering angles. In both cases the excitation 
of electron-hole pairs near the surface of the sphere leads to very large enhancements 
of the scattering cross section relative to that calculated in the classical approximation 
which neglects such effects. 
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Appendix 1. 

In this Appendix we derive equation (9). From equations (6),  (7) and (8) one has 

(Al .  1) 

From the definition of @; Q , / ~  ( r i )  = gm ( r i )  fori = 1,2.  Thus equation (9) follows directly 
from (A1.3). 

Appendix 2. 

In this appendix we derive equation (14). Our starting point is equation (9). We wish to 
relate @ ( R )  and d@(R)/aR to the induced charge. The total charge is p ( r )  = 
po(r) + S p ( r )  where po is given by equation (la) and p is  the sum of the charge density 
of the fast electron, P O ,  and dp, the charge induced in the system by the fast electron. 
Writing 

and using 

V 2  q( r )  = -4np(r) 

gives 
(A2.2) 

(A2.3) 

multiply by r 2  and integrate from rl to r2 to obtain 

(A2.5~)  

(A2.5 b) 
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Thus use of equation (A1.2) in (A2.2) gives 

(A2.6) 

Recalling that p& (r2) = q& ( r z )  and Qm ( rl ) = q& ( rl ) , approximating ql in the integral 
in (A2.4) by pi, and using (A2.6) in (A2.5) yields 

d r r 2 ( 8 ( R - r ) p ( t ) +  O(r-R)pj;)) 

= -4njr d r ? p l m ( r )  (A2.7) 

where p('"1 = PO,  p(in) = ( l/din)) po , and p = PO + 6 p .  Use of these relations in equation 
(A2.7) gives 

R2 (" @L ( R ) - @& (R ) 1 = - 4~ I" dr r2 [ aplm - (3 - 1 ) ( P O )  /m]  

where di) is defined in equation (34. The quantity 

(A2.8) 
1 

ar 1, 

is the charge density induced in the sphere by the fast electron in the classical approxi- 
mation while 6 p  is the actual charge induced in the sphere. 

Next one writes equation (A2.3) as 

(A2.9) 

(A2.10) 

Use of (A1.2) in (A2.2) and writing the resulting equation in a form similar to (A2.7) 
gives 

= -4n1- drr(8(R - r ) p j $ ) ( r )  + O(r  - R)pjz)(r)) .  (A2.11) 
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Approximating cpin the integral in (A2.10) by and using (A2.11) in (A2.10) gives 

(A2.12) 

Use of (A2.8) and (A2.12) in (9) yields equation (14) where 

6p'/m' = 6 p / m  - ($j - 1) (po>/m (A2.13) 

We show next that 6p(lm) is a function of 1 only and not m. The actual susceptibility 
of the sphere must be a function of r, r '  and the angle between rand r' .  Thus 

(A2.14~) 

(A2.14b) 

(A2.14~) 

(A2.15~)  

( A 2 . m )  

(A2.16) 

The normal modes of the sphere are determined by the solutions of (A2.16) when there 
is no external potential in which case cpNM =cpEM(r) is a function of 1 but not m because 
X in (A2.16) is a function of 1 only. The actual charge 6p in (A2.13) that is induced by 
the incoming electron can be expanded in the normal modes 

6 p ( r )  = 2 6plNM(r> Y l m ( f i 2 r )  (A2.17~)  
lm 

where 

and consequently 6plm of (A2.13) is not a function of m. 
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Appendix 3. 

In this Appendix we derive equation (21) by the use of (19) in (18). We first use equation 

D R Penn and P Ape11 

(A3.1) 

(A3 .2~)  

(A3.2b) 

(A3.3) 

(A3.4) 

(A3 .5~)  

(A3.5 b) 

(A3.5 c) 

(A3.5d) 

(A3.6) 
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Use of 

( 1  + 1 + d ) / A / =  1 - I ( 1  + l)A.T'(d$')/R)(&- 1) 

from (18) yields equation (21) 

P = -2e/((2ir)3hu), ImI  
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